Thermoelectric Transport in Nanoscale Materials
نویسنده
چکیده
Measurements of thermoelectric transport coefficients yield important information regarding fundamental properties of a system in addition to the information supplied from the electronic transport measurements. In this thesis we report gate dependent and temperature dependent conductance (G) and thermoelectric power (TEP) measurements made in three different basic nanomaterials: single-walled nanotubes (SWNTs), multi-walled nanotubes (MWNTs), and silicon nanowires (SiNWs). There are two means of generating a thermoelectric voltage: carrier diffusion and phonon drag. Gate dependent measurements of metallic SWNTs verified the use of the mesoscopic Mott formula, the equation governing diffusive thermoelectric voltage, used to relate TEP with the conductance. We find phonon drag negligible in graphene based systems. In the semi-conducting SWNT we observed high valued and variable TEP. In addition, the TEP behaves according to a simple Schottky barrier (SB) controlled transport model where transport takes place by quantum mechanical tunneling through the barrier, or thermal activation over it, depending on the value of the gate electric field. We also observe saw-tooth oscillations of the TEP in weakly contacted SWNTs at temperatures below the charging energy, indicative of Coulomb blockade transport. Importantly, we made quantitative measurements of the TEP oscillation amplitude, agreeing well with theory. In the MWNT, the Mott formula describes well the TEP within a framework of multiple parallel channels. We observe TEP weighting in this parallel system. In conjunction with conductance measurements, by probing the TEP in MWNTs we are able to extract the number of shells participating in electrical transport. These results agree well with figures obtained independently in controlled breakdown experiments, and the temperature dependent results may prove useful for investigation of the intershell interaction energy. We also investigate TEP in the SiNW, where TEP response appears similar to that of the semi-conducting SWNT, but with subtle differences. In the SiNW, both SB and bulk controlled transport contribute to the overall TEP, and must be considered within a series transport model, weighted appropriately by their length. These measurements give us insight into the SiNW transport properties.
منابع مشابه
Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices.
The key challenges in thermoelectric power conversion are creating a significant temperature difference and obtaining more heat energy through a thermoelectric device. Herein, graphene/polyethyleneglycol composites (G-PEGs) were proposed as a heat supply for thermoelectric devices. The G-PEGs not only afford a lot of conductive pathways for heat transfer but also act as highly thermally conduct...
متن کاملBottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material.
The effectiveness of thermoelectric (TE) materials is quantified by the dimensionless figure of merit (zT). An ideal way to enhance zT is by scattering phonons without scattering electrons. Here we show that, using a simple bottom-up method, we can prepare bulk nanostructured Si that exhibits an exceptionally high zT of 0.6 at 1050 K, at least three times higher than that of the optimized bulk ...
متن کاملThermoelectric Properties of Functionalized Graphene Grain Boundaries
Thermoelectric effect enables direct conversion between thermal and electrical energy and provides an alternative route for power generation and refrigeration. Hereby it is important to find materials with a high thermoelectric performance. In this sense, in the present work, we study the behavior of the thermoelectric properties of functionalized graphene grain boundaries by employing non-equi...
متن کاملExploring Electron and Phonon Transport at the Nanoscale for Thermoelectric Energy Conversion
Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful working fluids. Recently, nanostructured thermoelectrics have demonstrated remarkably enhanced energy conversion efficiencies, primarily due to a reduction in lattice thermal ...
متن کاملAnisotropic Thermoelectric Response in Two-Dimensional Puckered Structures
Two-dimensional semiconductor materials with puckered structure offer a novel playground to implement nanoscale thermoelectric, electronic, and optoelectronic devices with improved functionality. Using a combination of approaches to compute the electronic and phonon band structures with Green’s function based transport techniques, we address the thermoelectric performance of phosphorene, arsene...
متن کاملHigh-performance thermoelectric nanocomposites from nanocrystal building blocks.
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Her...
متن کامل